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ABSTRACT 

Second adiabatic theory is used to derive an asymptotic expression for  the 

bounce-averaged rate of kinetic energy change (W) experienced by charged par- 

t icles trapped in electric and magnetic fields which conserve the first two in- 

variants M and J of their  motion. The restriction that there exist no electric 

field E l ,  , parallel  to the magnetic field, reduces (W) by one order  in the adiabatic 

expansion parameter  m / e  from its E,,  # 0 value. If in addition the magnetic 

field arises solely from, and convects rigidly with, the arbi t rary motion of a 

perfectly conducting magnet, we find that (W) is smaller  by yet another order  

in m / e .  Our resul ts  generalize and confirm the conclusions of Hones and Berge- 

~OIJ [1965] who consider El, = 0 and the special case  of a uniformly rotating 

conducting magnetized sphere with non-aligned rotation and magnetization axes. 
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CHARGED PARTIC LE E NE RGIZ ATION 

BY AN ARBITRARILY MOVING MAGNET 

INT RODU C TION 

Electric fields arising from the uniform rotation of a magnetized conducting 

sphere have been previously examined as  a mechanism for  the energization of 

charged particles. [Terletzky, 1946; Davis, 1947, 1948: Hones and Bergeson, 

1965.1 These studies have attempted to determine whether such electric fields 

(assuming that a star, the sun, o r  the earth can be modeled as such a sphere) 

can accelerate particles to cosmic ray  and auroral  energies or explain the high 

energy populations of planetary magnetospheres. 

Cases where the rotation and magnetic axes are parallel  [Davis, 1947, 19481 

and arbi t rar i ly  aligned [Terletzky, 1946; Hones and Bergeson, 19651 have both 

been investigated. If t he  sphere is assumed to  be surrounded by a vacuum, 

large accelerating voltages ( > l o 4  volts for  the earth and higher for  the sun and 

stars) have been shown to exist along dipole field lines. 

For such a sphere embedded in a plasma medium, however, the ro- 

tation induced electric field component E parallel  to the exterior dipole lines 

can be cancelled to a large extent by an electrostatic field arising from small  

plasma charge separations along the field lines. Assuming that E I, = 0 exactly, 

Hones and Bergeson [1965] have shown that (W)/e for  trapped particles vanishes 

through second order  in E d e :  in the magnetic field of a dipole rotating with 
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magnetization and rotation vectors arbitrari ly aligned, trapped particles lose as 

much energy over one half of their  bounce motion as they gain over the other 

half if El l  = 0. 

In this paper we first derive from second adiabatic theory [Northrop, 19631 

an expression for  the (W) of a trapped particle. The leading order  contribution 

to (W) a r i ses  f rom the presence of a parallel electric field; when infinite plasma 

conductivity parallel  to the B-lines is assumed, precluding the existcnce of E I I  , 

(W) drops one order  in E. We next further res t r ic t  the problem by assuming 

that the only source of magnetic fields is an arbi t rar i ly  shaped conducting magnet 

whose motion conserves the particle's magnetic moment M and second invariant J, 

but is otherwise arbitrary.  The pattern of currents  in the magnet's f r a m e  is 

assumed invariant, so that the magnetic field moves rigidly. In this case  energy 

changes (W) occur on a still slower time scale than when Ell = 0 alone. 

Our principal conclusion is that the slow variation of (W) found by Hones and 

Bergeson for El l  = 0 and a dipole magnetic source is a particular example of 

a theorem applicable to general motions of arbi t rar i ly  shaped magnets. 

A GENERAL EXPRESSION FOR (W) 

The general representation of an electric field E( r ,  t ) in t e r m s  of the 

electrostatic potential 4( r , t ) and the magnetic vector potential A( r , t ) is 



An alternative form of A is 

In Equation (2) a and P a r e  functions of space and time such that magnetic field 

lines a r e  the intersections of surfaces a = const. with surfaces of P = const. 

The magnetic field B is given in magnitude and direction by 

B ( r ,  t )  = Va(r, t ) x  vP(r, t )  . (3) 

The fact that there exists an infinity of pairs a - P  for a given B is of no concern, 

for  the resultant expression for (W) is independent of the choice of a particular 

a - p pair. Given an a - /? pair, V7 in Equation (2) represents this gauge freedom, 

and since (W) is gauge invariant we set  7 = 0. 

Once functions a and ,B a r e  chosen, it is readily shown [Northrop, 19631 that 

each magnetic field line retains i ts  a ,  ,B labels as i t  moves in time through space 

with the field line velocity 

A point r in space is labeled at time t by the a - P values of the magnetic field 

line presently passing through it, together with a measure of a rc  length s( r ,  t ) 

measured along the field line from an arbitrary reference surface. The set  of 

independent variables a ,  p, s, t can thus be used instead of the set r, t . 
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With this introduction to a, ,By and s in hand, Equation (1) becomes 

I 

with $defined as 

Since n and p a r e  constant on field lines, V U  and vp lie perpendicular to field lines, 

and 

4 + IC, is thus a potential f o r  the parallel electric field and is constant on a field 

line segment where El l  = 0. 

In adiabatic theory there is associated with each particle the useful quantity 

where W is the particle kinetic energy and e ( g  t $) is evaluated at the particle 

position. For static fields + = 0 and K is the total energy of the particle moving 

in the potential 4. 
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From Equation (8) we determine the instantaneous t ime rate  of change of 

particle kinetic energy to be 

w = K - e ( & $ )  , (9) 

a dot denoting a time variation as seen by the moving particle. 

Let u s  denote the average of the arbitrary quantity a( t ) over the bounce 

period T of a given particle by (a), 

- 1  
t +T 

d t ' a ( t ' )  = [f:] f" a 9 

II 
(a) = T-'  1 

the s integrals extending over a complete guiding center bounce path, which in 

second adiabatic motion very closely follows a magnetic field line. Averaging 

Equation (9) in this way, we obtain for the bounce averaged rate of change of 

particle energy 

Northrop [I9631 has  shown 

+ @ ( E 3 )  9 L (K) 
= - - 1 aJ(a ,  P ,  K ,  M, t )  

e eT a t  
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where J is the particle longitudinal invariant defined, using Equation (8), as a 

function of a ,  p ,  K, M ( =  WL/B), and t as 

= ( 2 m ) ” *  j [ K - e Z ( c c ,  P ,  s ,  t ) - M B ( a ,  P ,  s ,  t)]’’2 ds . (13) 

In Equation (13) Z and 8 a r e  respectively [q5 t $3 ( r  , t ) and B( r ,  t ) expressed in 

t e r m s  of the variables a, p ,  s, and t o  The 0 ( e 3 )  in Equation (12) indicates that 

t e r m s  neglected are asymptotically of third order  in the smallness parameter  E .  

Since both K and J contain a factor m, l / e  appears on both sides of Equation (12) 

simply for ordering purposes. 

Taking a/dt of Equation (13) (at constant a, P ,  K, and M) ,  we obtain 

The expression fo r  (W)/e, 
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follows by combining Equations (ll), (12), and (14). Noting that 

we alternatively write Equation (15) in the form 

where in t e r m s  of the guiding center drift velocity vD and the field line velocity 

vx, and p are ( vD - v4) - VU and ( vD - vx) * Vp respectively. 

Requisites for  the existence of the invariants M and J a r e  that t ime variations 

of B take place on the guiding center drift t ime scale (an E -  t ime scale) and that 

E be of order  E .  Under these conditions dB/d t ,  &, P, and Z are 8( ) quantities, 

and the leading order  contribution to Equation (17) comes from. the Ell (i.e. J&'8s) 

term.  E E , ~  f 0, we ficd wing Equatior, (10) 

where su and s are the upper and lower m i r r o r  points fo r  a particle with in- 

var iants  J and M whose guiding center is on the line U ,  p. Even a small  amount 

of E l ,  

x 

can thus produce significant energy changes on the drift time scale. 
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(W)IN SPECIAL CASES 

For E,, = 0, 1 is independent of s as shown in the preceding section and 

Equation (17) reduces to 

M ac ac 
e e 

* 
From the relationships 

derived by Northrop [1963], there  follow the alternative fo rms  of Equation (19): 

1 being the Jacobian operator. All  t e rms  in the fo rms  (19-21) are now 8 ( E  ') and 

we conclude that the absence of E,,  slows the energy change by one order.  

When the only source of magnetic fields is a moving conducting magnet, 

and the magnetic field moves rigidly with the magnet, aB/dt ( a ,  P ,  s ,  t ) = 0: 

to an observer moving so as to always remain at point s on the field line a, p,  

no magnetic field changes are apparent. Also, since 1 is independent of s ,  it is 
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the same at any exterior point on a field line as at the point where the line enters  

the magnet. Therefore, if Z is known everywhere on the surface of the magnet, 

(W)can be obtained at all exterior points f rom any of the forms  (19-21). The 

problem is reduced to determining 2 on the surface of the magnet. 

Inside the moving conducting magnet we assume that conduction electrons 

are in equilibrium, i.e. 

where v( r ,  t ) is the velocity of a point in the magnet located at r in the inertial 

f rame ("laboratory frame") in which (W) is to be evaluated. It will be further 

assumed that only the permanent magnetization contributes to A, which then 

moves rigidly with the magnet. The following considerations follow closely 

those of Backus [I9561 but allow f o r  arbitrary motion of the conducting magnet. 

Vector manipulation of Equation (22) leads to 

A )  - A  * v v  - A x  (V x v )  - v * VA] . 1 a A  1 V@ + -- = c [V(V c a t  

Here A, @, v, and r are all measured in the laboratory f rame;  d u d  t , the rate of 

change of A seen by an observer fixed in the laboratory f rame at r , arises from 

both rotation and translation of the magnet: 

dA - 
a t  
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The instantaneous angular velocity R is defined in t e rms  of the instantaneous 

rotation rate with respect to the laboratory coordinates of any se t  of axes fixed 

in the conducting body. Further ,  

where vo and ro a r e  the velocity and displacement of the origin of the body axes 

with respect to the origin of laboratory coordinates. Substituting from Equations 

(24) and (25) into Equation (23) ,  we obtain after performing the V-operations 

This result is identical with that of Backus, who considered the special ca se  

where the axis of rotation is fixed in the laboratory frame. 

Thus, interior to the conducting magnet 

v - A  
4 = 7  f D ( t )  , 

where D( t ) is arbitrary,  so that in this region 

V - A  I ap CptqJ = t- C f f D ( t )  
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Since the field moves rigidly with the magnet, d P / d  t f v * VP = 0 and 4 + IC, is 

simply an arbi t rary function of time. 

Taking for  boundary conditions the continuity of 4 and $J, we conclude that 

4 + IC, is independent of spatial position outside the magnet, since all exterior 

points a r e  connected to the magnet by magnetic field lines and 4 t $J is s-independent. 

It then follows that d Z h a  = 0, d I / d P  = 0, and with dB/dt = 0, Equation (19) predicts 

Thus the average rate  of energy change drops by two orders  in E .  

CONCLUDING REMARKS 

We would emphasize that the principal result  of this paper-that the bounce 

averaged rate of energy change of trapped particles is of 6 (e3) small  in the 

adiabatic parameter-is a theorem, proved for the idealized model in which 

E!! = 0 and B arises solely from and moves rigidly with a conducting magnet. 

If the entire magnetic field surrounding the earth were due to  the earth 's  in- 

ternal  currents  (and El, = 0) the wobbling field caused by the earth 's  rotation 

would not affect trapped particle energies. The existence in reality, however, 

of small finite parallel  resistivity and concommitant Ell and the presence of non- 

rigidly convected magnet field sources-e.g. ring, magnetopause, and tail 

currents-push us  into the range of validity of Equations (18 and 20) and their  

predictions of much more  rapid energy changes. 



14 

REFERENCES 

Backus, G., The external electric field of a rotating magnet, Astrophys. J., 123 

508, 1956. 

Davis, L. Jr., Stellar electromagnetic fields, Phys. Rev., 72, 632, 1947. 

Davis, L. Jr., Stellar electromagnetic fields, Phys. Rev., 73,  536,  1948. 

Hones, E. W. Jr., and J. E. Bergeson, Electric field generated by a rotating 

magnetized sphere, J. Geophys. Res., 70, 4951,  1965. 

Northrop, T. G., The Adiabatic Motion of Charged Particles,  John Wiley and 

Sons (Interscience), New York, 1963. 

Terletzky, J., Induction of fast  charged particle cur ren ts  by rotating magnetized 

cosmic bodies, J. Phys. (Russian), 10(4) ,  377,  1946. 


